
Package: blockCV (via r-universe)
August 30, 2024

Type Package

Title Spatial and Environmental Blocking for K-Fold and LOO
Cross-Validation

Version 3.1-4

Date 2024-05-19

URL https://github.com/rvalavi/blockCV

BugReports https://github.com/rvalavi/blockCV/issues

Maintainer Roozbeh Valavi <valavi.r@gmail.com>

Description Creating spatially or environmentally separated folds for
cross-validation to provide a robust error estimation in
spatially structured environments; Investigating and
visualising the effective range of spatial autocorrelation in
continuous raster covariates and point samples to find an
initial realistic distance band to separate training and
testing datasets spatially described in Valavi, R. et al.
(2019) <doi:10.1111/2041-210X.13107>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports sf (>= 1.0), Rcpp (>= 1.0.2)

Suggests terra (>= 1.6-41), ggplot2 (>= 3.3.6), cowplot, automap (>=
1.0-16), shiny (>= 1.7), tmap (>= 2.0), biomod2, gstat,
methods, knitr, rmarkdown, testthat (>= 3.0.0), covr

RoxygenNote 7.3.1

VignetteBuilder knitr

Config/testthat/edition 3

LinkingTo Rcpp

Repository https://rvalavi.r-universe.dev

RemoteUrl https://github.com/rvalavi/blockcv

1

https://github.com/rvalavi/blockCV
https://github.com/rvalavi/blockCV/issues
https://doi.org/10.1111/2041-210X.13107

2 blockCV

RemoteRef HEAD

RemoteSha 582c77a6d31aff4f2ad06e4a7cbb3c164291bc40

Contents
blockCV . 2
buffering . 3
cv_block_size . 4
cv_buffer . 5
cv_cluster . 7
cv_nndm . 9
cv_plot . 12
cv_similarity . 13
cv_spatial . 15
cv_spatial_autocor . 19
envBlock . 21
foldExplorer . 22
rangeExplorer . 23
spatialAutoRange . 24
spatialBlock . 25

Index 28

blockCV blockCV: Spatial and Environmental Blocking for K-Fold and LOO
Cross-Validation

Description

Simple random selection of training and testing folds in the structured environment leads to an un-
derestimation of error in the evaluation of spatial predictions and may result in inappropriate model
selection (Telford and Birks, 2009; Roberts et al., 2017). The use of spatial and environmental
blocks to separate training and testing sets has been suggested as a good strategy for realistic er-
ror estimation in datasets with dependence structures, and more generally as a robust method for
estimating the predictive performance of models used to predict mapped distributions (Roberts et
al., 2017). The package blockCV offers a range of functions for generating train and test folds
for k-fold and leave-one-out (LOO) cross-validation (CV). It allows for separation of data spa-
tially and environmentally, with various options for block construction. Additionally, it includes a
function for assessing the level of spatial autocorrelation in response or raster covariates, to aid in
selecting an appropriate distance band for data separation. The blockCV package is suitable for the
evaluation of a variety of spatial modelling applications, including classification of remote sensing
imagery, soil mapping, and species distribution modelling (SDM). It also provides support for dif-
ferent SDM scenarios, including presence-absence and presence-background species data, rare and
common species, and raster data for predictor variables.

Author(s)

Roozbeh Valavi, Jane Elith, José Lahoz-Monfort, Ian Flint, and Gurutzeta Guillera-Arroita

buffering 3

References

Valavi, R., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2019). blockCV: An R package
for generating spatially or environmentally separated folds for k-fold cross-validation of species dis-
tribution models. Methods in Ecology and Evolution, 10(2), 225-232. doi:10.1111/2041-210X.13107.

See Also

cv_spatial, cv_cluster, cv_buffer, and cv_nndm for blocking strategies.

buffering Use distance (buffer) around records to separate train and test folds

Description

This function is deprecated and will be removed in future updates! Please use cv_buffer instead!

Usage

buffering(
speciesData,
species = NULL,
theRange,
spDataType = "PA",
addBG = TRUE,
progress = TRUE

)

Arguments

speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable).

species Character. Indicating the name of the field in which species data (binary re-
sponse i.e. 0 and 1) is stored. If speceis = NULL the presence and absence data
(response variable) will be treated the same and only training and testing records
will be counted. This can be used for multi-class responses such as land cover
classes for remote sensing image classification, but it is not necessary. Do not
use this argument when the response variable is continuous or count data.

theRange Numeric value of the specified range by which the training and testing datasets
are separated. This distance should be in metres no matter what the coordinate
system is. The range can be explored by spatialAutoRange.

spDataType Character input indicating the type of species data. It can take two values, PA
for presence-absence data and PB for presence-background data, when species
argument is not NULL. See the details section for more information on these two
approaches.

addBG Logical. Add background points to the test set when spDataType = "PB".

progress Logical. If TRUE a progress bar will be shown.

4 cv_block_size

See Also

cv_buffer

cv_block_size Explore spatial block size

Description

This function assists selection of block size. It allows the user to visualise the blocks interactively,
viewing the impact of block size on number and arrangement of blocks in the landscape (and op-
tionally on the distribution of species data in those blocks). Slide to the selected block size, and
click Apply Changes to change the block size.

Usage

cv_block_size(r, x = NULL, column = NULL, min_size = NULL, max_size = NULL)

Arguments

r a terra SpatRaster object (optional). If provided, its extent will be used to specify
the blocks. It also supports stars, raster, or path to a raster file on disk.

x a simple features (sf) or SpatialPoints object of spatial sample data. If r is
supplied, this is only added to the plot. Otherwise, the extent of x is used for
creating the blocks.

column character (optional). Indicating the name of the column in which response vari-
able (e.g. species data as a binary response i.e. 0s and 1s) is stored to be shown
on the plot.

min_size numeric; the minimum size of the blocks (in metres) to explore.

max_size numeric; the maximum size of the blocks (in metres) to explore.

Value

an interactive shiny session

Examples

if(interactive()){
library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

manually choose the size of spatial blocks
cv_block_size(x = pa_data,

column = "occ",
min_size = 2e5,

cv_buffer 5

max_size = 9e5)

}

cv_buffer Use buffer around records to separate train and test folds (a.k.a.
buffered/spatial leave-one-out)

Description

This function generates spatially separated train and test folds by considering buffers of the specified
distance (size parameter) around each observation point. This approach is a form of leave-one-out
cross-validation. Each fold is generated by excluding nearby observations around each testing point
within the specified distance (ideally the range of spatial autocorrelation, see cv_spatial_autocor).
In this method, the testing set never directly abuts a training sample (e.g. presence or absence; 0s
and 1s). For more information see the details section.

Usage

cv_buffer(
x,
column = NULL,
size,
presence_bg = FALSE,
add_bg = FALSE,
progress = TRUE,
report = TRUE

)

Arguments

x a simple features (sf) or SpatialPoints object of spatial sample data (e.g., species
data or ground truth sample for image classification).

column character; indicating the name of the column in which response variable (e.g.
species data as a binary response i.e. 0s and 1s) is stored. This is required when
presence_bg = TRUE, otherwise optional.

size numeric value of the specified range by which training/testing data are sepa-
rated. This distance should be in metres. The range could be explored by
cv_spatial_autocor.

presence_bg logical; whether to treat data as species presence-background data. For all other
data types (presence-absence, continuous, count or multi-class responses), this
option should be FALSE.

add_bg logical; add background points to the test set when presence_bg = TRUE. We
do not recommend this according to Radosavljevic & Anderson (2014). Keep it
FALSE, unless you mean to add the background pints to testing points.

6 cv_buffer

progress logical; whether to shows a progress bar.

report logical; whether to generate print summary of records in each fold; for very big
datasets, set to FALSE for faster calculation.

Details

When working with presence-background (presence and pseudo-absence) species distribution data
(should be specified by presence_bg = TRUE argument), only presence records are used for speci-
fying the folds (recommended). Consider a target presence point. The buffer is defined around this
target point, using the specified range (size). By default, the testing fold comprises only the target
presence point (all background points within the buffer are also added when add_bg = TRUE). Any
non-target presence points inside the buffer are excluded. All points (presence and background)
outside of buffer are used for the training set. The methods cycles through all the presence data, so
the number of folds is equal to the number of presence points in the dataset.

For presence-absence data (and all other types of data), folds are created based on all records, both
presences and absences. As above, a target observation (presence or absence) forms a test point, all
presence and absence points other than the target point within the buffer are ignored, and the training
set comprises all presences and absences outside the buffer. Apart from the folds, the number
of training-presence, training-absence, testing-presence and testing-absence records is stored and
returned in the records table. If column = NULL and presence_bg = FALSE, the procedure is like
presence-absence data. All other data types (continuous, count or multi-class responses) should be
done by presence_bg = FALSE.

Value

An object of class S3. A list of objects including:

• folds_list - a list containing the folds. Each fold has two vectors with the training (first) and
testing (second) indices

• k - number of the folds

• size - the defined range of spatial autocorrelation)

• column - the name of the column if provided

• presence_bg - whether this was treated as presence-background data

• records - a table with the number of points in each category of training and testing

References

Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions:
Complexity, overfitting and evaluation. Journal of Biogeography, 41, 629–643. https://doi.org/10.1111/jbi.12227

See Also

cv_nndm, cv_spatial, and cv_spatial_autocor

cv_cluster 7

Examples

library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
make an sf object from data.frame
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

bloo <- cv_buffer(x = pa_data,
column = "occ",
size = 350000, # size in metres no matter the CRS
presence_bg = FALSE)

cv_cluster Use environmental or spatial clustering to separate train and test folds

Description

This function uses clustering methods to specify sets of similar environmental conditions based on
the input covariates, or cluster of spatial coordinates of the sample data. Sample data (i.e. species
data) corresponding to any of these groups or clusters are assigned to a fold. Clustering is done using
kmeans for both approaches. The only requirement is x that leads to a clustering of the confidantes
of sample data. Otherwise, by providing r, environmental clustering is done.

Usage

cv_cluster(
x,
column = NULL,
r = NULL,
k = 5L,
scale = TRUE,
raster_cluster = FALSE,
num_sample = 10000L,
biomod2 = TRUE,
report = TRUE,
...

)

Arguments

x a simple features (sf) or SpatialPoints object of spatial sample data (e.g., species
data or ground truth sample for image classification).

column character (optional). Indicating the name of the column in which response vari-
able (e.g. species data as a binary response i.e. 0s and 1s) is stored. This is only
used to see whether all the folds contain all the classes in the final report.

8 cv_cluster

r a terra SpatRaster object of covariates to identify environmental groups. If pro-
vided, clustering will be done in environmental space rather than spatial coordi-
nates of sample points.

k integer value. The number of desired folds for cross-validation. The default is k
= 5.

scale logical; whether to scale the input rasters (recommended) for clustering.
raster_cluster logical; if TRUE, the clustering is done over the entire raster layer, otherwise it

will be over the extracted raster values of the sample points. See details for more
information.

num_sample integer; the number of samples from raster layers to build the clusters (when
raster_cluster = FALSE).

biomod2 logical. Creates a matrix of folds that can be directly used in the biomod2
package as a CV.user.table for cross-validation.

report logical; whether to print the report of the records per fold.
... additional arguments for stats::kmeans function, e.g. algorithm = "MacQueen".

Details

As k-means algorithms use Euclidean distance to estimate clusters, the input raster covariates should
be quantitative variables. Since variables with wider ranges of values might dominate the clusters
and bias the environmental clustering (Hastie et al., 2009), all the input rasters are first scaled and
centred (scale = TRUE) within the function.

If raster_cluster = TRUE, the clustering is done in the raster space. In this approach the clusters
will be consistent throughout the region and different sample datasets in the same region (for com-
parison). However, this may result in a cluster(s) that covers none of the species records (the spatial
location of response samples), especially when species data is not dispersed throughout the region
or the number of clusters (k or folds) is high. In this case, the number of folds is less than specified
k. If raster_cluster = FALSE, the clustering will be done in species points and the number of the
folds will be the same as k.

Note that the input raster layer should cover all the species points, otherwise an error will rise. The
records with no raster value should be deleted prior to the analysis or another raster layer must be
provided.

Value

An object of class S3. A list of objects including:

• folds_list - a list containing the folds. Each fold has two vectors with the training (first) and
testing (second) indices

• folds_ids - a vector of values indicating the number of the fold for each observation (each
number corresponds to the same point in x)

• biomod_table - a matrix with the folds to be used in biomod2 package
• k - number of the folds
• column - the name of the column if provided
• type - indicates whether spatial or environmental clustering was done.
• records - a table with the number of points in each category of training and testing

cv_nndm 9

References

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining,
inference, and prediction (2nd ed., Vol. 1).

See Also

cv_buffer and cv_spatial

Examples

library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
make an sf object from data.frame
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

load raster data
path <- system.file("extdata/au/", package = "blockCV")
files <- list.files(path, full.names = TRUE)
covars <- terra::rast(files)

spatial clustering
set.seed(6)
sc <- cv_cluster(x = pa_data,

column = "occ", # optional; name of the column with response
k = 5)

environmental clustering
set.seed(6)
ec <- cv_cluster(r = covars, # if provided will be used for environmental clustering

x = pa_data,
column = "occ", # optional; name of the column with response
k = 5,
scale = TRUE)

cv_nndm Use the Nearest Neighbour Distance Matching (NNDM) to separate
train and test folds

Description

A fast implementation of the Nearest Neighbour Distance Matching (NNDM) algorithm (Milà et al.,
2022) in C++. Similar to cv_buffer, this is a variation of leave-one-out (LOO) cross-validation. It
tries to match the nearest neighbour distance distribution function between the test and training data
to the nearest neighbour distance distribution function between the target prediction and training
points (Milà et al., 2022).

10 cv_nndm

Usage

cv_nndm(
x,
column = NULL,
r,
size,
num_sample = 10000,
sampling = "random",
min_train = 0.05,
presence_bg = FALSE,
add_bg = FALSE,
plot = TRUE,
report = TRUE

)

Arguments

x a simple features (sf) or SpatialPoints object of spatial sample data (e.g., species
data or ground truth sample for image classification).

column character; indicating the name of the column in which response variable (e.g.
species data as a binary response i.e. 0s and 1s) is stored. This is required when
presence_bg = TRUE, otherwise optional.

r a terra SpatRaster object of a predictor variable. This defines the area that model
is going to predict.

size numeric value of the range of spatial autocorrelation (the phi parameter). This
distance should be in metres. The range could be explored by cv_spatial_autocor.

num_sample integer; the number of sample points from predictor (r) to be used for calculating
the G function of prediction points.

sampling either "random" or "regular" for sampling prediction points. When sampling
= "regular", the actual number of samples might be less than num_sample for
non-rectangular rasters (points falling on no-value areas are removed).

min_train numeric; between 0 and 1. A constraint on the minimum proportion of train
points in each fold.

presence_bg logical; whether to treat data as species presence-background data. For all other
data types (presence-absence, continuous, count or multi-class responses), this
option should be FALSE.

add_bg logical; add background points to the test set when presence_bg = TRUE. We
do not recommend this according to Radosavljevic & Anderson (2014). Keep it
FALSE, unless you mean to add the background pints to testing points.

plot logical; whether to plot the G functions.

report logical; whether to generate print summary of records in each fold; for very big
datasets, set to FALSE for slightly faster calculation.

cv_nndm 11

Details

When working with presence-background (presence and pseudo-absence) species distribution data
(should be specified by presence_bg = TRUE argument), only presence records are used for specify-
ing the folds (recommended). The testing fold comprises only the target presence point (optionally,
all background points within the distance are also included when add_bg = TRUE; this is the distance
that matches the nearest neighbour distance distribution function of training-testing presences and
training-presences and prediction points; often lower than size). Any non-target presence points
inside the distance are excluded. All points (presence and background) outside of distance are used
for the training set. The methods cycles through all the presence data, so the number of folds is
equal to the number of presence points in the dataset.

For all other types of data (including presence-absence, count, continuous, and multi-class) set
presence_bg = FALE, and the function behaves similar to the methods explained by Milà and col-
leagues (2022).

Value

An object of class S3. A list of objects including:

• folds_list - a list containing the folds. Each fold has two vectors with the training (first) and
testing (second) indices

• k - number of the folds

• size - the distance band to separated trainig and testing folds)

• column - the name of the column if provided

• presence_bg - whether this was treated as presence-background data

• records - a table with the number of points in each category of training and testing

References

C. Milà, J. Mateu, E. Pebesma, and H. Meyer, Nearest Neighbour Distance Matching Leave-One-
Out Cross-Validation for map validation, Methods in Ecology and Evolution (2022).

See Also

cv_buffer and cv_spatial_autocor

Examples

library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
make an sf object from data.frame
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

load raster data
path <- system.file("extdata/au/bio_5.tif", package = "blockCV")
covar <- terra::rast(path)

12 cv_plot

nndm <- cv_nndm(x = pa_data,
column = "occ", # optional
r = covar,
size = 350000, # size in metres no matter the CRS
num_sample = 10000,
sampling = "regular",
min_train = 0.1)

cv_plot Visualising folds created by blockCV in ggplot

Description

This function visualises the folds create by blockCV. It also accepts a raster layer to be used as
background in the output plot.

Usage

cv_plot(
cv,
x,
r = NULL,
nrow = NULL,
ncol = NULL,
num_plots = 1:10,
max_pixels = 3e+05,
remove_na = TRUE,
raster_colors = gray.colors(10, alpha = 1),
points_colors = c("#E69F00", "#56B4E9"),
points_alpha = 0.7,
label_size = 4

)

Arguments

cv a blockCV cv_* object; a cv_spatial, cv_cluster, cv_buffer or cv_nndm

x a simple features (sf) or SpatialPoints object of the spatial sample data used for
creating the cv object. This could be empty when cv is a cv_spatial object.

r a terra SpatRaster object (optional). If provided, it will be used as background
of the plots. It also supports stars, raster, or path to a raster file on disk.

nrow integer; number of rows for facet plot

ncol integer; number of columns for facet plot

num_plots a vector of indices of folds; by default the first 10 are shown (if available). You
can choose any of the folds to be shown e.g. 1:3 or c(2, 7, 16, 22)

cv_similarity 13

max_pixels integer; maximum number of pixels used for plotting r

remove_na logical; whether to remove excluded points in cv_buffer from the plot

raster_colors character; a character vector of colours for raster background e.g. terrain.colors(20)

points_colors character; two colours to be used for train and test points

points_alpha numeric; the opacity of points

label_size integer; size of fold labels when a cv_spatial object is used.

Value

a ggplot object

Examples

library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

spatial clustering
sc <- cv_cluster(x = pa_data, k = 5)

now plot the create folds
cv_plot(cv = sc,

x = pa_data, # sample points
nrow = 2,
points_alpha = 0.5)

cv_similarity Compute similarity measures to evaluate possible extrapolation in
testing folds

Description

This function computes multivariate environmental similarity surface (MESS) as described in Elith
et al. (2010). MESS represents how similar a point in a testing fold is to a training fold (as a
reference set of points), with respect to a set of predictor variables in r. The negative values are
the sites where at least one variable has a value that is outside the range of environments over the
reference set, so these are novel environments.

14 cv_similarity

Usage

cv_similarity(
cv,
x,
r,
num_plot = seq_along(cv$folds_list),
jitter_width = 0.1,
points_size = 2,
points_alpha = 0.7,
points_colors = NULL,
progress = TRUE

)

Arguments

cv a blockCV cv_* object; a cv_spatial, cv_cluster, cv_buffer or cv_nndm

x a simple features (sf) or SpatialPoints object of the spatial sample data used for
creating the cv object.

r a terra SpatRaster object of environmental predictor that are going to be used for
modelling. This is used to calculate similarity between the training and testing
points.

num_plot a vector of indices of folds.

jitter_width numeric; the width of jitter points.

points_size numeric; the size of points.

points_alpha numeric; the opacity of points

points_colors character; a character vector of colours for points

progress logical; whether to shows a progress bar for random fold selection.

Value

a ggplot object

Examples

library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
make an sf object from data.frame
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

load raster data
path <- system.file("extdata/au/", package = "blockCV")
files <- list.files(path, full.names = TRUE)
covars <- terra::rast(files)

hexagonal spatial blocking by specified size and random assignment

cv_spatial 15

sb <- cv_spatial(x = pa_data,
column = "occ",
size = 450000,
k = 5,
iteration = 1)

compute extrapolation
cv_similarity(cv = sb, r = covars, x = pa_data)

cv_spatial Use spatial blocks to separate train and test folds

Description

This function creates spatially separated folds based on a distance to number of row and/or column.
It assigns blocks to the training and testing folds randomly, systematically or in a checkerboard
pattern. The distance (size) should be in metres, regardless of the unit of the reference system
of the input data (for more information see the details section). By default, the function creates
blocks according to the extent and shape of the spatial sample data (x e.g. the species occurrence),
Alternatively, blocks can be created based on r assuming that the user has considered the landscape
for the given species and case study. Blocks can also be offset so the origin is not at the outer corner
of the rasters. Instead of providing a distance, the blocks can also be created by specifying a number
of rows and/or columns and divide the study area into vertical or horizontal bins, as presented in
Wenger & Olden (2012) and Bahn & McGill (2012). Finally, the blocks can be specified by a
user-defined spatial polygon layer.

Usage

cv_spatial(
x,
column = NULL,
r = NULL,
k = 5L,
hexagon = TRUE,
flat_top = FALSE,
size = NULL,
rows_cols = c(10, 10),
selection = "random",
iteration = 100L,
user_blocks = NULL,
folds_column = NULL,
deg_to_metre = 111325,
biomod2 = TRUE,
offset = c(0, 0),
extend = 0,
seed = NULL,

16 cv_spatial

progress = TRUE,
report = TRUE,
plot = TRUE,
...

)

Arguments

x a simple features (sf) or SpatialPoints object of spatial sample data (e.g., species
data or ground truth sample for image classification).

column character (optional). Indicating the name of the column in which response vari-
able (e.g. species data as a binary response i.e. 0s and 1s) is stored to find
balanced records in cross-validation folds. If column = NULL the response vari-
able classes will be treated the same and only training and testing records will be
counted. This is used for binary (e.g. presence-absence/background) or multi-
class responses (e.g. land cover classes for remote sensing image classification),
and you can ignore it when the response variable is continuous or count data.

r a terra SpatRaster object (optional). If provided, its extent will be used to specify
the blocks. It also supports stars, raster, or path to a raster file on disk.

k integer value. The number of desired folds for cross-validation. The default is k
= 5.

hexagon logical. Creates hexagonal (default) spatial blocks. If FALSE, square blocks is
created.

flat_top logical. Creating hexagonal blocks with topped flat.

size numeric value of the specified range by which blocks are created and train-
ing/testing data are separated. This distance should be in metres. The range
could be explored by cv_spatial_autocor and cv_block_size functions.

rows_cols integer vector. Two integers to define the blocks based on row and column e.g.
c(10, 10) or c(5, 1). Hexagonal blocks uses only the first one. This option is
ignored when size is provided.

selection type of assignment of blocks into folds. Can be random (default), systematic,
checkerboard, or predefined. The checkerboard does not work with hexago-
nal and user-defined spatial blocks. If the selection = 'predefined', user-
defined blocks and folds_column must be supplied.

iteration integer value. The number of attempts to create folds with balanced records.
Only works when selection = "random".

user_blocks an sf or SpatialPolygons object to be used as the blocks (optional). This can
be a user defined polygon and it must cover all the species (response) points.
If selection = 'predefined', this argument and folds_column must be sup-
plied.

folds_column character. Indicating the name of the column (in user_blocks) in which the
associated folds are stored. This argument is necessary if you choose the ’pre-
defined’ selection.

deg_to_metre integer. The conversion rate of metres to degree. See the details section for more
information.

cv_spatial 17

biomod2 logical. Creates a matrix of folds that can be directly used in the biomod2
package as a CV.user.table for cross-validation.

offset two number between 0 and 1 to shift blocks by that proportion of block size.
This option only works when size is provided.

extend numeric; This parameter specifies the percentage by which the map’s extent is
expanded to increase the size of the square spatial blocks, ensuring that all points
fall within a block. The value should be a numeric between 0 and 5.

seed integer; a random seed for reproducibility (although an external seed should also
work).

progress logical; whether to shows a progress bar for random fold selection.

report logical; whether to print the report of the records per fold.

plot logical; whether to plot the final blocks with fold numbers in ggplot. You can
re-create this with cv_plot.

... additional option for cv_plot.

Details

To maintain consistency, all functions in this package use meters as their unit of measurement.
However, when the input map has a geographic coordinate system (in decimal degrees), the block
size is calculated by dividing the size parameter by deg_to_metre (which defaults to 111325 me-
ters, the standard distance of one degree of latitude on the Equator). In reality, this value varies by a
factor of the cosine of the latitude. So, an alternative sensible value could be cos(mean(sf::st_bbox(x)[c(2,4)])
* pi/180) * 111325.

The offset can be used to change the spatial position of the blocks. It can also be used to assess the
sensitivity of analysis results to shifting in the blocking arrangements. These options are available
when size is defined. By default the region is located in the middle of the blocks and by setting the
offsets, the blocks will shift.

Roberts et. al. (2017) suggest that blocks should be substantially bigger than the range of spatial
autocorrelation (in model residual) to obtain realistic error estimates, while a buffer with the size
of the spatial autocorrelation range would result in a good estimation of error. This is because of
the so-called edge effect (O’Sullivan & Unwin, 2014), whereby points located on the edges of the
blocks of opposite sets are not separated spatially. Blocking with a buffering strategy overcomes
this issue (see cv_buffer).

Value

An object of class S3. A list of objects including:

• folds_list - a list containing the folds. Each fold has two vectors with the training (first) and
testing (second) indices

• folds_ids - a vector of values indicating the number of the fold for each observation (each
number corresponds to the same point in species data)

• biomod_table - a matrix with the folds to be used in biomod2 package

• k - number of the folds

• size - input size, if not null

18 cv_spatial

• column - the name of the column if provided

• blocks - spatial polygon of the blocks

• records - a table with the number of points in each category of training and testing

References

Bahn, V., & McGill, B. J. (2012). Testing the predictive performance of distribution models. Oikos,
122(3), 321-331.

O’Sullivan, D., Unwin, D.J., (2010). Geographic Information Analysis, 2nd ed. John Wiley &
Sons.

Roberts et al., (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography. 40: 913-929.

Wenger, S.J., Olden, J.D., (2012). Assessing transferability of ecological models: an underappreci-
ated aspect of statistical validation. Methods Ecol. Evol. 3, 260-267.

See Also

cv_buffer and cv_cluster; cv_spatial_autocor and cv_block_size for selecting block size

For CV.user.table see BIOMOD_Modeling in biomod2 package

Examples

library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
make an sf object from data.frame
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

hexagonal spatial blocking by specified size and random assignment
sb1 <- cv_spatial(x = pa_data,

column = "occ",
size = 450000,
k = 5,
selection = "random",
iteration = 50)

spatial blocking by row/column and systematic fold assignment
sb2 <- cv_spatial(x = pa_data,

column = "occ",
rows_cols = c(8, 10),
k = 5,
hexagon = FALSE,
selection = "systematic")

cv_spatial_autocor 19

cv_spatial_autocor Measure spatial autocorrelation in spatial response data or predictor
raster files

Description

This function provides a quantitative basis for choosing block size. The spatial autocorrelation in
either the spatial sample points or all continuous predictor variables available as raster layers is
assessed and reported. The response (as defined be column) in spatial sample points can be binary
such as species distribution data, or continuous response like soil organic carbon. The function
estimates spatial autocorrelation ranges of all input raster layers or the response data. This is the
range over which observations are independent and is determined by constructing the empirical
variogram, a fundamental geostatistical tool for measuring spatial autocorrelation. The empirical
variogram models the structure of spatial autocorrelation by measuring variability between all pos-
sible pairs of points (O’Sullivan and Unwin, 2010). Results are plotted. See the details section for
further information.

Usage

cv_spatial_autocor(
r,
x,
column = NULL,
num_sample = 5000L,
deg_to_metre = 111325,
plot = TRUE,
progress = TRUE,
...

)

Arguments

r a terra SpatRaster object. If provided (and x is missing), it will be used for to
calculate range.

x a simple features (sf) or SpatialPoints object of spatial sample data (e.g., species
binary or continuous date).

column character; indicating the name of the column in which response variable (e.g.
species data as a binary response i.e. 0s and 1s) is stored for calculating spatial
autocorrelation range. This supports multiple column names.

num_sample integer; the number of sample points of each raster layer to fit variogram models.
It is 5000 by default, however it can be increased by user to represent their region
well (relevant to the extent and resolution of rasters).

deg_to_metre integer. The conversion rate of degrees to metres.
plot logical; whether to plot the results.
progress logical; whether to shows a progress bar.
... additional option for cv_plot

20 cv_spatial_autocor

Details

The input raster layers should be continuous for computing the variograms and estimating the range
of spatial autocorrelation. The input rasters should also have a specified coordinate reference sys-
tem. However, if the reference system is not specified, the function attempts to guess it based on the
extent of the map. It assumes an un-projected reference system for layers with extent lying between
-180 and 180.

Variograms are calculated based on the distances between pairs of points, so un-projected rasters
(in degrees) will not give an accurate result (especially over large latitudinal extents). For un-
projected rasters, the great circle distance (rather than Euclidean distance) is used to calculate the
spatial distances between pairs of points. To enable more accurate estimate, it is recommended
to transform un-projected maps (geographic coordinate system / latitude-longitude) to a projected
metric reference system (e.g. UTM or Lambert) where it is possible. See autofitVariogram from
automap and variogram from gstat packages for further information.

Value

An object of class S3. A list object including:

• range - the suggested range (i.e. size), which is the median of all calculated ranges in case of
’r’.

• range_table - a table of input covariates names and their autocorrelation range

• plots - the output plot (the plot is shown by default)

• num_sample - number sample of ’r’ used for analysis

• variograms - fitted variograms for all layers

References

O’Sullivan, D., Unwin, D.J., (2010). Geographic Information Analysis, 2nd ed. John Wiley &
Sons.

Roberts et al., (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography. 40: 913-929.

See Also

cv_block_size

Examples

library(blockCV)

import presence-absence species data
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
make an sf object from data.frame
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)

load raster data
path <- system.file("extdata/au/", package = "blockCV")
files <- list.files(path, full.names = TRUE)

envBlock 21

covars <- terra::rast(files)

spatial autocorrelation of a binary/continuous response
sac1 <- cv_spatial_autocor(x = pa_data,

column = "occ", # binary or continuous data
plot = TRUE)

spatial autocorrelation of continuous raster files
sac2 <- cv_spatial_autocor(r = covars,

num_sample = 5000,
plot = TRUE)

show the result
summary(sac2)

envBlock Use environmental clustering to separate train and test folds

Description

This function is deprecated and will be removed in future updates! Please use cv_cluster instead!

Usage

envBlock(
rasterLayer,
speciesData,
species = NULL,
k = 5,
standardization = "normal",
rasterBlock = TRUE,
sampleNumber = 10000,
biomod2Format = TRUE,
numLimit = 0,
verbose = TRUE

)

Arguments

rasterLayer A raster object of covariates to identify environmental groups.

speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable).

species Character. Indicating the name of the field in which species data (binary re-
sponse i.e. 0 and 1) is stored. If speceis = NULL the presence and absence data
(response variable) will be treated the same and only training and testing records
will be counted. This can be used for multi-class responses such as land cover

22 foldExplorer

classes for remote sensing image classification, but it is not necessary. Do not
use this argument when the response variable is continuous or count data.

k Integer value. The number of desired folds for cross-validation. The default is k
= 5.

standardization

Standardize input raster layers. Three possible inputs are "normal" (the default),
"standard" and "none". See details for more information.

rasterBlock Logical. If TRUE, the clustering is done in the raster layer rather than species
data. See details for more information.

sampleNumber Integer. The number of samples from raster layers to build the clusters.

biomod2Format Logical. Creates a matrix of folds that can be directly used in the biomod2
package as a DataSplitTable for cross-validation.

numLimit Integer value. The minimum number of points in each category of data (train_0,
train_1, test_0 and test_1). Shows a message if the number of points in any of
the folds happens to be less than this number.

verbose Logical. To print the report of the recods per fold.

See Also

cv_cluster

foldExplorer Explore the generated folds

Description

This function is deprecated! Please use cv_plot function for plotting the folds.

Usage

foldExplorer(blocks, rasterLayer, speciesData)

Arguments

blocks deprecated!

rasterLayer deprecated!

speciesData deprecated!

rangeExplorer 23

rangeExplorer Explore spatial block size

Description

This function is deprecated and will be removed in future updates! Please use cv_block_size
instead!

Usage

rangeExplorer(
rasterLayer,
speciesData = NULL,
species = NULL,
rangeTable = NULL,
minRange = NULL,
maxRange = NULL

)

Arguments

rasterLayer raster layer for make plot

speciesData a simple features (sf) or SpatialPoints object containing species data (response
variable). If provided, the species data will be shown on the map.

species character value indicating the name of the field in which the species data (re-
sponse variable e.g. 0s and 1s) are stored. If provided, species presence and
absence data will be shown in different colours.

rangeTable deprecated option!

minRange a numeric value to set the minimum possible range for creating spatial blocks.
It is used to limit the searching domain of spatial block size.

maxRange a numeric value to set the maximum possible range for creating spatial blocks.
It is used to limit the searching domain of spatial block size.

See Also

cv_block_size

24 spatialAutoRange

spatialAutoRange Measure spatial autocorrelation in the predictor raster files

Description

This function is deprecated and will be removed in future updates! Please use cv_spatial_autocor
instead!

Usage

spatialAutoRange(
rasterLayer,
sampleNumber = 5000L,
border = NULL,
speciesData = NULL,
doParallel = NULL,
nCores = NULL,
showPlots = TRUE,
degMetre = 111325,
maxpixels = 1e+05,
plotVariograms = FALSE,
progress = TRUE

)

Arguments

rasterLayer A raster object of covariates to find spatial autocorrelation range.
sampleNumber Integer. The number of sample points of each raster layer to fit variogram mod-

els. It is 5000 by default, however it can be increased by user to represent their
region well (relevant to the extent and resolution of rasters).

border deprecated option!
speciesData A spatial or sf object (optional). If provided, the sampleNumber is ignored and

variograms are created based on species locations. This option is not recom-
mended if the species data is not evenly distributed across the whole study area
and/or the number of records is low.

doParallel deprecated option!
nCores deprecated option!
showPlots Logical. Show final plot of spatial blocks and autocorrelation ranges.
degMetre Numeric. The conversion rate of metres to degree. This is for constructing

spatial blocks for visualisation. When the input map is in geographic coordinate
system (decimal degrees), the block size is calculated based on deviding the
calculated range by this value to convert to the input map’s unit (by default
111325; the standard distance of a degree in metres, on the Equator).

maxpixels Number of random pixels to select the blocks over the study area.
plotVariograms deprecated option!
progress Logical. Shows progress bar. It works only when doParallel = FALSE.

spatialBlock 25

See Also

cv_spatial_autocor

spatialBlock Use spatial blocks to separate train and test folds

Description

This function is deprecated and will be removed in future updates! Please use cv_spatial instead!

Usage

spatialBlock(
speciesData,
species = NULL,
rasterLayer = NULL,
theRange = NULL,
rows = NULL,
cols = NULL,
k = 5L,
selection = "random",
iteration = 100L,
blocks = NULL,
foldsCol = NULL,
numLimit = 0L,
maskBySpecies = TRUE,
degMetre = 111325,
border = NULL,
showBlocks = TRUE,
biomod2Format = TRUE,
xOffset = 0,
yOffset = 0,
extend = 0,
seed = 42,
progress = TRUE,
verbose = TRUE

)

Arguments

speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable).

species Character (optional). Indicating the name of the column in which species data
(response variable e.g. 0s and 1s) is stored. This argument is used to make
folds with evenly distributed records. This option only works by random

26 spatialBlock

fold selection and with binary or multi-class responses e.g. species presence-
absence/background or land cover classes for remote sensing image classifica-
tion. If speceis = NULL the response classes will be treated the same and only
training and testing records will be counted and balanced.

rasterLayer A raster object for visualisation (optional). If provided, this will be used to
specify the blocks covering the area.

theRange Numeric value of the specified range by which blocks are created and train-
ing/testing data are separated. This distance should be in metres. The range
could be explored by spatialAutoRange() and rangeExplorer() functions.

rows Integer value by which the area is divided into latitudinal bins.

cols Integer value by which the area is divided into longitudinal bins.

k Integer value. The number of desired folds for cross-validation. The default is k
= 5.

selection Type of assignment of blocks into folds. Can be random (default), system-
atic, checkerboard, or predefined. The checkerboard does not work with user-
defined spatial blocks. If the selection = ’predefined’, user-defined blocks and
foldsCol must be supplied.

iteration Integer value. The number of attempts to create folds that fulfil the set require-
ment for minimum number of points in each training and testing fold (for each
response class e.g. train_0, train_1, test_0 and test_1), as specified by species
and numLimit arguments.

blocks A sf or SpatialPolygons object to be used as the blocks (optional). This can be
a user defined polygon and it must cover all the species (response) points. If the
selection = ’predefined’, this argument (and foldsCol) must be supplied.

foldsCol Character. Indicating the name of the column (in user-defined blocks) in which
the associated folds are stored. This argument is necessary if you choose the
’predefined’ selection.

numLimit deprecated option!

maskBySpecies Since version 1.1, this option is always set to TRUE.

degMetre Integer. The conversion rate of metres to degree. See the details section for more
information.

border deprecated option!

showBlocks Logical. If TRUE the final blocks with fold numbers will be created with ggplot
and plotted. A raster layer could be specified in rasterlayer argument to be as
background.

biomod2Format Logical. Creates a matrix of folds that can be directly used in the biomod2
package as a DataSplitTable for cross-validation.

xOffset Numeric value between 0 and 1 for shifting the blocks horizontally. The value
is the proportion of block size.

yOffset Numeric value between 0 and 1 for shifting the blocks vertically. The value is
the proportion of block size.

extend numeric; This parameter specifies the percentage by which the map’s extent is
expanded to increase the size of the square spatial blocks, ensuring that all points
fall within a block. The value should be a numeric between 0 and 5.

spatialBlock 27

seed Integer. A random seed generator for reproducibility.

progress Logical. If TRUE shows a progress bar when numLimit = NULL in random fold
selection.

verbose Logical. To print the report of the recods per fold.

See Also

cv_spatial

Index

autofitVariogram, 20

BIOMOD_Modeling, 18
blockCV, 2
buffering, 3

cv_block_size, 4, 16, 18, 20, 23
cv_buffer, 3, 4, 5, 9, 11, 17, 18
cv_cluster, 3, 7, 18, 21, 22
cv_nndm, 3, 6, 9
cv_plot, 12, 17, 19, 22
cv_similarity, 13
cv_spatial, 3, 6, 9, 15, 25, 27
cv_spatial_autocor, 5, 6, 10, 11, 16, 18, 19,

24, 25

envBlock, 21

foldExplorer, 22

kmeans, 7

rangeExplorer, 23

spatialAutoRange, 3, 24
spatialBlock, 25

variogram, 20

28

	blockCV
	buffering
	cv_block_size
	cv_buffer
	cv_cluster
	cv_nndm
	cv_plot
	cv_similarity
	cv_spatial
	cv_spatial_autocor
	envBlock
	foldExplorer
	rangeExplorer
	spatialAutoRange
	spatialBlock
	Index

